LINEAR INTEGRATED CIRCUITS

MOTOR SPEED REGULATORS

The TCA 900 and TCA 910 are monolithic integrated circuits in Jedec TO-126 plastic package. They are designed for use as speed regulators for DC motors of record players, cassette recorders and players. The TCA 900 is particularly suitable for battery operated portable equipments, and the TCA 910 for car-battery and mains operations.

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS	TCA 900	TCA 910	
V_{s}	Supply voltage	14 V	20 V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	0.8 W	
	at $\mathrm{T}_{\text {case }}=100^{\circ} \mathrm{C}$	5 W	
$\mathrm{~T}_{\text {stg }}$	Storage temperature		
T_{j}	Junction temperature	-55 to $150^{\circ} \mathrm{C}$	

ORDERING NUMBERS: TCA 900
TCA 910

MECHANICAL DATA

CONNECTION AND SCHEMATIC DIAGRAMS

THERMAL DATA

$R_{\text {th } j \text {-case }}$ $R_{\text {th } j-a m b}$	Thermal resistance junction-case Thermal resistance junction-ambient	Typ. Typ.	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {ref }}$	Reference voltage (between pins 2 and 3)	$\begin{aligned} & V_{s}=5.5 \mathrm{~V} \\ & I_{m}=70 \mathrm{~mA} \\ & R_{T}=0 \end{aligned}$		2.6		V
$l_{\text {d }}$	Quiescent current (at pin 3)	$\begin{aligned} & V_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=0 \\ & \mathrm{R}_{\mathrm{T}}=0 \end{aligned}$		2.6		mA
V_{m}	Output voltage (for TCA 900 only)	$\begin{aligned} & V_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=91 \Omega \end{aligned}$		3.6	3.9	V
V_{m}	Output voltage (for TCA 910 only)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=270 \Omega \end{aligned}$		5.6	6.3	V

41 теА900 tca910

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{1-2}	Dropout voltage	$\begin{aligned} & \Delta V_{m} / V_{m}=-1 \% \\ & I_{m}=70 \mathrm{~mA} \\ & R_{T}=91 \Omega \end{aligned}$		1.2		V
	Limiting output current (at pin 2)	$\begin{aligned} & V_{s}=5.5 \mathrm{~V} \\ & v_{2-3}=0 \end{aligned}$		400		mA
$k=\Delta I_{2} / \Delta I_{3}$		$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{2}=70 \mathrm{~mA} \\ & \Delta \mathrm{I}_{2}= \pm 10 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=0 \end{aligned}$		8.5		-
$\frac{\Delta V_{m}}{V_{m}} / \Delta V_{s}$	Line regulation (for TCA 900 only)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=91 \Omega \end{aligned}$		0.1		\%/V
$\frac{\Delta V_{m}}{V_{m}} / \Delta V_{s}$	Line regulation (for TCA 910 only)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=10 \mathrm{~V} \text { to } 16 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=270 \Omega \end{aligned}$		0.1		\%/V
$\frac{\Delta V_{m}}{V_{m}} / \Delta I_{m}$	Load regulation	$\begin{aligned} & V_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=40 \text { to } 100 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=0 \end{aligned}$		0.005		\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta T_{\text {amb }}$	Temperature coefficient	$\begin{aligned} & V_{1-3}=5.5 \mathrm{~V} \\ & \mathrm{I}_{2}=70 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

Fig. 1 - Test circuit.

Fig. 2 - Typical application circuit.

Fig. 3 - Normalized k vs. I_{2}.

Fig. 4 - Dropout voltage vs. output current

Fig. 5 - Maximum allowable power dissipation vs. ambient temperature

APPLICATION INFORMATION

The regulator supplies the motor in such a way as to keep its speed constant, independent of supply voltage, applied torque and ambient temperature variations.
The basic equation for the motor is:

$$
V_{m}=E_{0}+R_{m} I_{m}=a_{1} n+a_{2} c
$$

Where: $\quad V_{m}=$ supply voltage applied to the motor
$E_{0}=$ back electromotive force
$\mathrm{n}=$ motor speed (r.p.m.)
$R_{m}=$ internal resistance (of the motor)
$I_{m}=$ current absorbed (by the motor)
a_{1} and $\mathrm{a}_{2}=$ constants
c $\quad=$ drive torque
A voltage supply with the following characteristics
$\begin{array}{ll}E=E_{0} & E=\text { electromotice force } \\ R_{0}=-R_{m} & R_{0}=\text { output resistance }\end{array}$
gives performance required.

Fig. 6 - Minimum E_{0} allow-
able vs. $\mathbf{R}_{\mathbf{T}}$

This means that a variation in current absorbed by the motor, due to a variation in torque applied, causes a proportional variation in regulator output voltage. In fig. 6 is shown the minimum allowable E_{0} vs. R_{T}. The TCA 900 and TCA 910 give a reference constant voltage $\mathrm{V}_{\text {ref }}$ (between pins 2 and 3) independent of variations of $\mathrm{V}_{5}, \mathrm{I}_{2}$ and ambient temperature.
They also give: $\quad I_{3}=I_{d 3}+I_{2} / k$
Where: $\quad I_{3}=$ total current at pin 3

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{d3}}=\text { quiescent current at pin } 3\left(\mathrm{I}_{2}=0\right) \\
& \mathrm{I}_{2}=\text { current at pin } 2 \\
& \mathrm{k}=\text { constant }
\end{aligned}
$$

The output voltage V_{m}, applied to the motor has the following value:

$$
V_{m}=\underbrace{V_{\text {ref }}+R_{T}\left[\frac{V_{\text {ref }}}{R_{s}}\left(1+\frac{1}{k}\right)+I_{d 3}\right]}_{\text {Term } 1}+\underbrace{\frac{I_{m}}{k} R_{T}}_{\text {Term } 2}
$$

Term 1 equals E_{0} and fixes the motor speed by means of the variable resistor R_{s};
Term $2 \frac{I_{m}}{k} . R_{T}$ equals the term $R_{m} \cdot I_{m}$ and, therefore, compensates variations of torque applied.
Complete compensation is achieved when:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{k} \mathrm{R}_{\mathrm{m}}
$$

$I_{f} R_{T \text { max }}>\mathrm{k}_{\mathrm{m} \text { min }}$ instability may occur.

