

CEMMINE

4040 W

GRUNDIG REPARATURHELFER

AM-ABGLEICHTABELLE

Zeigeranschlag vor dem Abgleich überprüfen. Zeigermitte auf die 1 von 510 kHz

Abgleich- Reihenfolge	Meßsender- Frequenz	Zeigerstellung auf der Empfängerskala und Wellenbereich	Ankopplung des Meßsenders über	Abgleichvorgang und Anzeige	Bemerkungen	
			50 nF an das Gitter der EAF 42 bzw. Kontakt 9,15	① u. ② auf das äußere Maximum abstimmen	Saugkreis vor dem ZF-Abgleich verstimmen. Alle Kerne auf das	
ZF-Kreise	468 kHz	Drehkondensator ^{2/3} eingedreht, (ca. 700 kHz) MW-A-Bereich	50 nF an das Gitter der EF 85 bzw. Lötöse X	③ u. ④ auf das äußere Maximum abstimmen	äußere Maximum abstimmen. Lautstärkeregler offen, Höhenr gister "dunkel" (nach innen drei	
			50 nF an Kontakt 5,8	Kreis ③ verstimmen, ⑥ u. ⑦ bei wechselseitiger Bedämpfung (10 kOhm + 5 nF in Reihe) auf das äußere Maximum abstimmen, nun Kreis ③ auf Maximum	Das richtige Maximum von Kern @ ist zwischen den beiden Spulen. Bedämpfung von Krels ③ an Punkt anschließen (freie Lötöse am F350	
ZF-Saugkreis	468 kHz		50 nF an das Gitter der ECH 81	® Elsenkern auf das äußere Minimum	Sperrtiefe ca. 1 : 30	
Oszillator, Zwischen- und Vorkreis Lang	160 kHz 300 kHz	MONTE-CENERI 300 kHz	künstliche Antenne	 ⑨ ⑩ Eisenkerne auf das äußere Maximum ⑪ Trimmer auf Maximum 	Disco Abelettere i e e e e	
Oszillator, Zwischen und Vorkreis Mittel	560 kHz 1500 kHz	MONTE-CENERI 1500 kHz	an die Antennen- und Erdbuchse	(9 (4) (5) Eisenkerne auf das äußere Maximum (6) (7) (6) Trimmer auf Maximum	Diese Abgleichvorgänge sind so vorzunehmen, daß die Abgleich- frequenzen jeweils an den angegebenen Skalenstellen erscheinen Abgleich mehrmals wiederholen und mit Trimmer beenden	
Ferrit-Abgleich	560 kHz 1500 kHz	MW-F-Taste drücken MONTE- CENERI 1500 kHz	Spule, welche über den Ferritstab geschoben wird. (Siehe Abbildung "Chassis-Rückansicht)	⊕ Eisenkern auf das äußere Maximum ⊛ Trimmer auf Maximum		
Oszillator und Vorkreis Kurz	6,4 MHz 9,85 MHz	MONTE-CENERI 1500 kHz	künstliche Antenne an die Antennen- und Erdbuchse	② u. ② Eisenkerne auf das äußere Maximum ③ Trimmer auf Maximum		

Antennen-Umschalter in Stellung 2

FM-ABGLEICHTABELLE

Abgleich- Reihenfolge	Meßsender- Frequenz	Zeigerstellung auf der Empfängerskala und Wellenbereich	Ankopplung des Meßsenders über	Abgleichvorgang und Anzeige	Bemerkunge n	
Verhältnis- demodulator	10,7 MHz AM-moduliert		50 nF an das Gitter der EAF 42 bzw. Kontakt 9,15	(a) Primärkreis auf das äußere Maximum (b) Sekundärkreis auf das äußere Minimum	Alle Kerne auf das äußere	
			50 nF an das Gitter der ECH 81	(c) (d) wediselseitig mit 10 kOhm + 5 nF (in Reihe) bedämpfen und auf das äußere Maximum abstimmen	Maximum bzw. Minimum Lautstärkeregler offen	
ZF-Kreise	10,7 MHz unmoduliert	Drehkondensator eingedreht, UKW-Bereich	50 nF an das Gitter der EF 85 bzw. Lötöse X	(e) (f) wechselseitig mit 10 kOhm + 5 nF (in Reihe) bedämpfen und auf das äußere Maximum abstimmen	Höhenregister "dunkel" Nähere Ausführungen siehe unt Punkt 1 der "Allgemeinen Hinwelse für den Abgleich"	
			Abschirmzylinder der EC 92 ablöten und Meßsender an den Abschirmzylinder	(g) (h) auf Maximum abstimmen		
10,7 MHz Saugkreise	10,7 MHz		heißes Ende wechselseitig an die UKW-Antennenbuchsen	(i) (k) Eisenkerne auf das äußere Minimum	Jeweils den der Buchse zugeordneten Saugkreis abgleiche	
Oszillator	91 MHz	91 MHz		(I) Eisenkern auf das äußere Maximum		
		` .			Nähere Ausführungen siehe unter	
Zwischenkreis	87,5 MHz 97,5 MHz	87,5 MHz 97,5 MHz	Meßsender in die UKW-Antennenbuchsen	(m) Eisenkern auf das äußere Maximum (n) Trimmer auf Maximum	Punkt 2 der "Allgemeinen Hinweise für den Abgleich" Abgleich mehrmals wiederholen und mit Trimmer beenden	
Vorkreis	91 MHz	91 MHz		(o) Eisenkern auf das äußere Maximum (von unten gesehen)		

Allgemeine Hinweise für den Abgleich

1. Abgleich des Verhältnisdemodulators und der UKW-ZF-Kreise.

Zum Abgleich des Verhältnisdemodulators wird ein Gleichspannungs-Röhrenvoltmeter am 5μF Elektrolyt-Kondensator C 86 angeschlossen (falls nicht vorhanden, kann in die Zuleitung des Widerstandes R 32 15 kOhm ein mA-Meter mit 0,1...1 mA Endausschlag eingeschaltet werden). Der amplitudenmodulierte Meßsender wird auf 10,7 MHz eingestellt und an das Gitter 1 der vorhergehenden Röhre (EAF 42) angeschlossen. Nun wird der Primärkreis (a) auf Maximum der Richtspannung abgeglichen. Der Sekundärkreis (b) wird dann nach einem Outputmeter auf Minimum abgeglichen. Dabei zeigt das Richtspannungs-Instrument auch ein schwaches Maximum an. Es soll mit möglichst kleiner Ausgangsspannung (≧ 500 mV) des Meßsenders abgeglichen werden (1,5 V Richtspannung).

10,7 MHz ZF-Kreise

Der Mefsender (unmoduliert) wird an das Gitter der ECH 81 angekoppelt und die Kreise (c) (d) (wechselseitig mit 10 kOhm + 5 nF in Reihe bedämpfen) auf das äußere Maximum der Richtspannung abgeglichen. Zum Abgleich der Kreise (e) (f) (wechselseitig mit 10 kOhm + 5 nF in Reihe bedämpfen) wird der Meßsender an das Gitter der EF 85 bzw. Lötöse x angeschlossen. Nun den Abschirmzylinder der EC 92 ablöten und den Meßsender am Abschirmzylinder anschließen und die Kreise (g) (h) auf das äußere Maximum abgleichen. Bei FM-Modulation kann auch am NF-Ausgang ein Outputmeter zur Maximumanzeige dienen.

Der einwandfreiere Weg zum Abgleich der AM- und FM-ZF ist jedoch der sichtbare Abgleich mit einem Oszillographen und Frequenzwobbler.

- 2. Beim Abgleich des UKW-Oszillator-, Zwischen- und Vorkreises wird der Mehsender (frequenzmoduliert) an die UKW-Antennenbuchsen angeschlossen. Mit den Eisenkernen und Trimmern wird so abgestimmt, daß das Outputmeter ein Maximum anzeigt.
- 3. Es soll immer mit möglichst kleiner Mehsenderspannung abgeglichen werden.
- 4. Kapazitätsübertrager HF-BV 1803 unterhalb des AM-Drehkondensators ist nicht abzugleichen.
- Zur Einstellung der HF-Bandbreiteregelung (Spulenfahrstühle) müssen die Kerne (4) und (6) auf der Schlitz-unterkante aufliegen und die Rändelscheibe "Höhenregister" nach rechts bis zum Anschlag gedreht werden.

6. Bei eventuellem Auswechseln eines Abgleichkernes nachstehende Tabelle beachten:

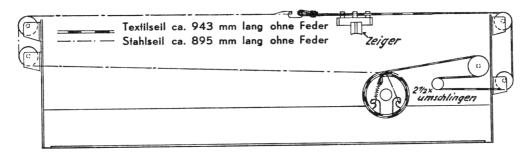
HF-Eisenkern

807—001: (a) (b) (c) (d) (e) (f) (h) (0) (1) (2) (7) (9) (10) (11) (14) (15) (21) (22) 807—002: (m) (l)

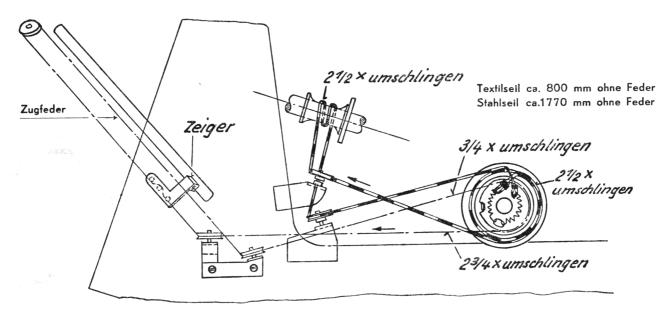
UKW-Eisenkern

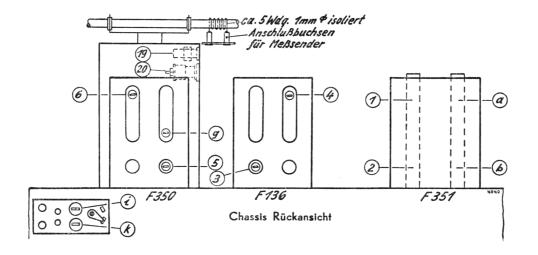
Kurze Ferritkerne

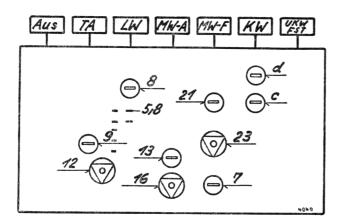
807—011 oder 807—012: (i) (k) (8) (13); 807—007 oder 011, 012: (19)

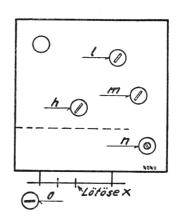

Gewindekerne

807-006: (3) (4) (5) (6)

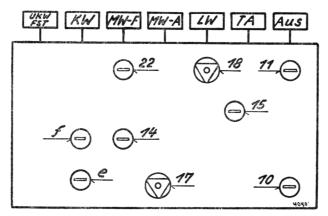

HF-Eisenkerne

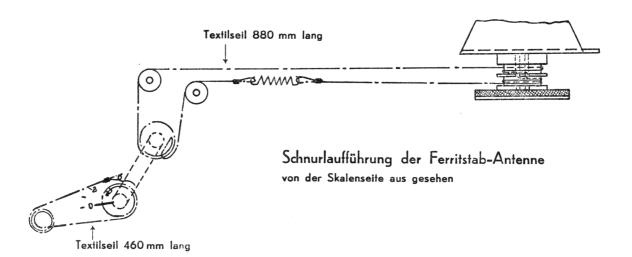

807---009: (g)


Schnurlaufführungen



Schnurlaufführung von der Skalenseite aus gesehen, AM-Antrieb





 $Drucktasten aggregat \ und \ UKW-Spulensatz \ von \ unten \ gesehen$

Drucktastenaggregat von oben gesehen

Technische Daten

Stromart:

Wechselstrom

Spannungswähler:

110, 125, 220, 240 Volt

Leistungsaufnahme:

ca. 65 Watt

Sicherungen:

Träge, 5 x 20 mm, 110/125 V: 1,2 A; 220/240 V: 0,6 A

Röhrenbestückung:

EF 85, EC 92, ECH 81, EAF 42, EABC 80, EL 12, EM 34 oder EM 35 und 1 Trockengleichrichter B 250 C 140

Skalenbeleuchtung:

2 Lämpchen, zylindrisch, 7 V/0,3 A matt

Anzahl der Kreise:

10 Rundfunk- und 11 UKW-Kreise, davon 3 (2) abstimmbar, 7 (9) fest eingestellt,

AM-ZF-Saugkreis, 2 FM-ZF-Saugkreise, 9 kHz-Sperre

Zwischenfrequenz:

ZF = 468 kHz, bei UKW = 10.7 MHz

Empfindlichkeit:

UKW: ca. 1,0 μ V bei 40 kHz Hub an 300 Ohm

KW: ca. 20 μV MW: ca. 8 μV 400 Hz 30% moduliert,

LW: ca. $8 \mu V$ bezogen auf 50 mW Ausgangsleistung

Trennschärfe: Bandbreite:

Bei 1 MHz ± 9 kHz 1:700 schmal 2 kHz, breit 11 kHz

Spiegelselektion:

KW: 1:10

ca. 1:30

MW: 1:18000 Mittelwerte

LW: 1:15000 J

Sperrtiefe des ZF-Saugkreises:

Oszillatorschwingstrom:

UKW: ca. 80 μA

KW: ca. 8μ A MW: ca. $8 \mu A$ LW: ca. $8 \mu A$

Ausgangsübertrager:

Primär ca. 3,5 kOhm, sekundär ca. 5 Ohm

Grenzfrequenzen:

fu = 60 Hz, fo = 12 kHz

Anodenstrom der Endröhre:

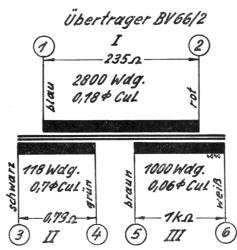
62 mA

Brummspannung:

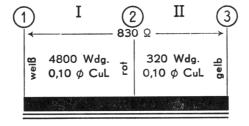
Lautstärkeregler zugedreht, Baß- und Höhenregister aufgedreht ca. 2,7 mV Lautstärkeregler aufgedreht, Baß- und Höhenregister aufgedreht ca. 3,0 mV

Gehäuse:

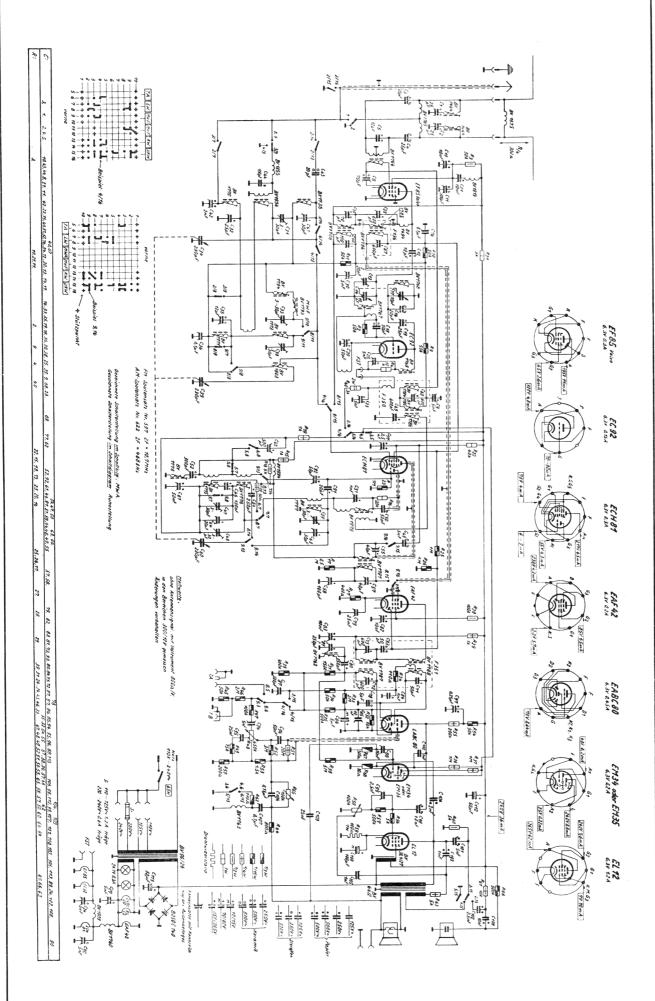

Gewicht:


Elegantes, hochglanzpoliertes Edelholzgehäuse 655 x 427 x 316 mm

Abmessungen:


ca. 16,5 kg

Übertrager-Schaubilder



Siebdrossel BV 38,4/27

SCHALTPLAN 4040 W Ausführung 2

Benennung	Positions- Nr.	Benennung	Positions- Nr.
löhren		$600 \text{ pF} \pm 2,5\%$ 125 V = DIN E 41380 Kl. 1	C 67
		$600 \text{ pF} \pm 2,5\%$ 125 V = DIN E 41380 Kl. 1	C 68
EF 85		$600 \text{ pF} \pm 2,5\%$ 125 V = DIN E 41380 Kl. 1	C 72
EC 92		600 pF ± 2,5% 125 V = DIN E 41380 Kl. 1	C 73
ECH 81		$30 \text{ pF} \pm 2.5\% 125 \text{ V} = \text{DIN E 41380 KI. 1}$	C 41
EAF 42		$1 \text{ nF} \pm 2.5\%$ 125 V = DIN E 41380 Kl. 1	C 51
EABC 80		$20 \text{ pF} \pm 10\%$ 125 V = DIN E 41380 Kl. 1	C 91
EL 12 EM 34 oder EM 35		$30 \text{ pF} \pm 10\%$ 125 V = DIN E 41380 KI. 1	C 63
EM 34 oder EM 33		$50 \text{ pF} \pm 10^{\circ}/_{\circ} 250 \text{ V} = \text{DIN E 41380 Kl. 1}$	C 50
Selengleichrichter	B 250 C 140	100 pF ± 10% 125 V = DIN E 41380 Kl. 1	C 58
		1 nF ± 10% 125 V = DIN E 41380 Kl. 1	C 84
		$500 \text{ pF} \pm 10\%$ 125 V = DIN E 41380 Kl. 1	C 62
Condensatoren und Trimmer		$20 \text{ pF} \pm 10\% 125 \text{ V} = \text{DIN E 41380 Kl. 1}$	C 64
apierkondensatoren		100 pF \pm 10% 500 V = DIN E 41380 KI. 1	C 44
•	C 88	$300 \text{ pF} \pm 2,5\% 500 \text{ V} = \text{DIN E 41380 Kl. 1}$	C 52
5 nF 125 V = DIN E 41166 $0.1 \mu\text{F } 125 \text{ V} = \text{DIN E } 41166$	C 107		C 92
$0.1 \mu\text{F} \ 125 \text{V} = \text{DIN E 41166}$ $0.15 \mu\text{F} \ 125 \text{V} = \text{DIN E 41166}$	C 106	$50 \text{ pF} \pm 10\% = 500 \text{ V} = \text{DIN E 41380 Kl. 1}$	C 72
0,15 pt 125 V = DIN E 41100			
2,5 nF 500 V = DIN E 41166	C 102	keram. Rohrkondensatoren	
$0.25 \mu\text{F} 500 \text{V} = $	C 97	12 pF \pm 0,5 pF 500 V = Rosalt 40 Rd	C 5
2 nF 500 V \sim	C 104	12 pF \pm 0,5 pF 500 V = Rosalt 40 Rd	C 12
5 nF 500 V ∼ DIN E 41166	C 101	20 pF ± 0,5 pF 500 V = Rosalt 40 Rd	C 16
5 m 500 V 0 5 m E 41105		25 pF ± 0,5 pF 500 V = Rosalt 40 Rd	C 19
malaukan dan antau an Militertun d		$25 \text{ pF} \pm 0.5 \text{ pF} 500 \text{ V} = \text{Rosalt } 40 \text{ Rd}$	C 1
apierkondensatoren Kleinstaust.		25 pF ± 0,5 pF 500 V = Rosalt 40 Rd	C 2
ERO- oder Hydraplastik		12 pF ± 2% 500 V = Rosalt 40 Rd	C 35
500 pF 125 V = DIN E 41166	C 87	20 pF ± 10% 500 V = Rosalt 40 Rd	C 43
2,5 nF 125 V = DIN E 41166	C 99	25 pF ± 10% 500 V = Rosalt 40 Rd	C 3
1 nF 125 V = DIN E 41166	C 105 C 85	$25 \text{ pF} \pm 10\% 500 \text{ V} = \text{Rosalt 40 Rd}$	C 4
10 nF 125 V = DIN E 41166 25 nF 125 V = DIN E 41166	C 79	$50 \text{ pF} \pm 10\% $ $500 \text{ V} = \text{Rosalt} 40 \text{ Rd}$	C 18
5 nF 125 V = DIN E 41166	C 94	$50 \text{ pF} \pm 10^{\circ}/_{\circ} 500 \text{ V} = \text{Rosalt } 40 \text{ Rd}$	C 20
25 nF 125 V = DIN E 41166	C 95	50 pF ± 10% 500 V = Rosalt 40 Rd	C 93
50 nF 125 V = DIN E 41166	C 96	300 pF ± 10% 500 V = Rosalt 90 Rd	C 11
$0.1 \mu\text{F} 125 \text{V} = \text{DIN} \text{E} 41166$	C 36	5 pF ± 0,5 pF 500 V = Rosalt 40 Rd	C 78
$0.1 \mu\text{F} 125 \text{V} = \text{DIN} \text{E} 41166$	C 76		
		70 pF ± 2,5% 500 V = Rosalt 90 Rd	C 8
10 nF 250 V = DIN E 41166	C 21	70 pF ± 2,5% 500 V = Rosalt 90 Rd	C 15
2 nF 500 V = DIN E 41166	C 42	$5 \text{ nF} \pm 20\%$ 250 V = Rosalt 4000	C 89
10 nF 500 V = DIN E 41166	C 83	$5 \text{ nF} \pm 20^{\circ}/_{\circ} 250 \text{ V} = \text{Rosalt } 4000$	C 90
10 nF 500 V = DIN E 41166	C 108	$5 \text{ nF} \pm 20^{\circ}/_{\circ} 250 \text{ V} = \text{Rosalt 4000}$	C 24
10 nF 500 V = DIN E 41166	C 10	$5 \text{ nF} \pm 20^{\circ}/_{\circ} 250 \text{ V} = \text{Rosalt } 4000$	C 30
2,5 nF 500 V = DIN E 41166	C 77	$5 \text{ nF} \pm 20\%$ 250 V = Rosalt 4000	C 9
10 nF 500 V = DIN E 41166 10 nF 500 V = DIN E 41166	C 82 C 98	$5 \text{ nF} \pm 20\% 250 \text{ V} = \text{Rosalt } 4000$	C 25
	C 98	$5 \text{ nF} \pm 20\% = 500 \text{ V} = \text{Rosalt } 4000$	C 23 C 49
50 nF 500 V = DIN E 41166 10 nF 500 V = DIN E 41166	C 103	5 nF ± 20% 500 V = Rosalt 4000	C 49
10 III- 300 4 — DIIA E 41100	6.05	Lufffrimmer	
			C 43
unstfolienkondensatoren		220 pF	C 13 C 31
$25 \text{ pF} \pm 2.5\%$ 125 V = DIN E 41380 Kl. 1	C 32	3 30 pF 3 30 pF	C 33
40 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 55	330 pF	C 38
40 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 57	330 pF	C 47
50 pF \pm 2,5% 125 V = DIN E 41380 KI. 1	C 71	3 30 pF	C 48
100 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 40	330 pF	C 59
130 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 46		
250 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1 250 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 80	Drohkondonesto-	
250 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1 250 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 81 C 54	Drehkondensator	634 64
-	C 54	3 x 230 pF	C 34 - C 3 C 60
600 pr T 7 5% 175 V = 11N E 71 220 F T			
600 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1 600 pF \pm 2,5% 125 V = DIN E 41380 Kl. 1	C 22	2 x 10 pF	C14-C1

Benennung	Positions- Nr.	Benennung	Positions- Nr.
Elektrolyt-Kondensatoren		Drahtwiderstände	
2 x 50 μF 350/385 V DIN E 41311 30/10	C 112 - C 113	DWD 1 Da. 100 Ω 0,5 DIN E 41412	R 59
5 μF 70/80 V DIN E 41311 50/20 100 μF 12/15 V DIN E 41311 50/20	C 86 C 100	Bauvorschriften:	
Well and I Date the content		UKW-Spulensatz Nr. 597	
Widerstände und Potentiometer		UKW-Zwischenkreisspule	HF-BV 1767
Schichtwiderstände		UKW-Oszillatorspule	HF-BV 1768
SWD 0,1 Da. 110 Ω 5 DIN E 41399	R 24 R 50	ZF-Spule 1 10,7 MHz	HF-BV 1769 HF-BV 1494
SWD 0,1 Da. 200Ω 5 DIN E 41399 SWD 0.1 Da. 400Ω	R 27	UKW-Drossel UKW-Drossel	HF-BV 1819
SWD 0,1 Da. $400~\Omega$ SWD 0,1 Da. $800~\Omega$ 5 DIN E 41399	R 64	OK VV-Drossei	111 -57 1017
SWD 0,1 Da. 1,5 KΩ 5 DIN E 41399	R 53	Spulensatz Nr. 622	
SWD 0,1 Da. 15 KΩ 5 DIN E 41399	R 32	LW-Vorkreisspule	HF-BV 1770
SWD 0,1 Da. 25 KΩ 5 DIN E 41399	R 49	LW-Vorkreisspule	HF-BV 1771
SWD 0,1 Da. 50 K Ω 5 DIN E 41399	R 9	MW-Vorkreisspule	HF-BV 1854
SWD 0,1 Da. $50 \text{ K}\Omega$ 5 DIN E 41399	R 10	MW-Vorkreisspule	HF-BV 1773 HF-BV 1735
SWD 0,1 Da. $50 \text{ K}\Omega$ 5 DIN E 41399	R 11	KW-Vorkreisspule	HF-BV 1735 HF-BV 1775
SWD 0,1 Da. 50 KΩ 5 DIN E 41399	R 54	LW-Oszillatorspule MW-Oszillatorspule	HF-BV 1776
SWD 0,1 Da. 50 KΩ 5 DIN E 41399	R 45	KW-Oszillatorspule	HF-BV 1777
SWD 0,1 Da. 5 KΩ 5 DIN E 41399	R 56	ZF-Sperre 468 kHz	HF-BV 1778
SWD 0,1 Da. 50 KΩ 5 DIN E 41399 SWD 0.1 Da. 150 KΩ 5 DIN E 41399	R 34 R 31	2. 000.10	
	R 2	ZF-Spule 1 468 kHz	HF-BV 1779 HF-BV 1780
SWD 0,1 Da. $50 \text{ K}\Omega$ 5 DIN E 41399 SWD 0,1 Da. $100 \text{ K}\Omega$ 5 DIN E 41399	R 47	ZF-Spule 3 10,7 MHz ZF-Spule 4 10,7 MHz	HF-BV 1780
SWD 0,1 Da. $100 \text{ K}\Omega$ 5 DIN E 41399	R 39	ZF-Spule 4 10,7 MHz ZF-Spule 5 10,7 MHz	HF-BV 1781
SWD 0,1 Da. 500 KΩ 5 DIN E 41399	R 35	ZF-Spule 6 10,7 MHz	HF-BV 1781
SWD 0,1 Da. 500 KΩ 5 DIN E 41399	R 17	'	,
SWD 0,1 Da. 500 KΩ 5 DIN E 41399	R 66	Drosselspule	HF-BV 1834 HF-BV 1855
SWD 0,1 Da. 500 KΩ 5 DIN E 41399	R 57	Antennenzusatzspul e	HL-BA 1000
SWD 0,1 Da. 1 M Ω 5 DIN E 41399	R 23	ZF-Filter I Nr. 350	
SWD 0,1 Da. 1 M Ω 5 DIN E 41399	R 25	ZF-Spule 2 468 kHz	HF-BV 1786
SWD 0,1 Da. 1 M Ω 5 DIN E 41399	R 26	ZF-Spule 3 468 kHz	HF-BV 1785
SWD 0,1 Da. 2 MΩ 5 DIN E 41399	R 46	ZF-Spule 2 10,7 MHz	HF-BV 1784
SWD 0,1 Da. $2 M\Omega$ 5 DIN E 41399 SWD 0,1 Da. $3 M\Omega$ 5 DIN E 41399	R 33 R 52	ZF-Filter II Nr. 136	
SWD 0,1 Da. $3 \text{ M}\Omega$ 5 DIN E 41399 SWD 0,1 Da. $5 \text{ M}\Omega$ 5 DIN E 41399	R 38	ZF-Spule 4 468 kHz	HF-BV 1785
SWD 0,1 Da. 110Ω 5 DIN E 41399	R 62	ZF-Spule 5 468 kHz	HF-BV 1786
SWD 0,1 Da. 50 Ω 5 DIN E 41399	R 20	2F-3p0le 3 400 KH2	111-57 1700
	R 15	ZF-Filfer III Nr. 351	
SWD 0,25 Da. 1 KΩ 5 DIN E 41401 SWD 0,25 Da. 1 KΩ 5 DIN E 41401	R 29	ZF-Spule 6 und 7 468 kHz	HF-BV 1787
SWD 0,25 Da. 1 K Ω 5 DIN E 41401	R 18	Verhältnisdemodulatorspule	HF-BV 1788
SWD 0,25 Da. 5 KΩ 5 DIN E 41401	R 63	11/24/5	UE DV 47/5
SWD 0,25 Da. 10 KΩ 5 DIN E 41401	R 61	UKW-Drossel ZF-Sperre 10,7 MHz	HF-BV 1765 HF-BV 1853
SWD 0,25 Da. 200 KΩ 5 DIN E 41401	R 55	ZF-Sperre 10,7 MHz ZF-Sperre 10,7 MHz	HF-BV 1853
SWD 0,25 Da. 1 M Ω 5 DIN E 41401	R 36	UKW-Eingangskreis	HF-BV 1766
SWD 0,25 Da. 1 M Ω 5 DIN E 41401	R 37	Kompensationsspule	HF-BV 1835
SWD 0,25 Da. 20 MΩ 5 DIN E 41401	R 51	9-kHz-Sperre	HF-BV 1762
SWD 0,25 Da. $5 \text{ K}\Omega$ 5 DIN E 41401	R 19	NF-Drossel	HF-BV 1763
SWD 0,5 Da. $5 \text{ K}\Omega$ 5 DIN E 41402	1	Heizdrossel	HF-BV 1760
SWD 0,5 Da. 50 K Ω 5 DIN E 41402	1	Heizdrossel	HF-BV 1809
SWD 0,5 Da. $100 \text{ K}\Omega$ 5 DIN E 41402	R 28	Kapazitätsübertrager	HF-BV 1803
SWD 1 Da. $40 \text{ K}\Omega$ 5 DIN E 41402	R 22	Antennenspule	HF-BV 1793
SWD 1 Da. 3 KΩ 5 DIN E 41403			
SWD 1 Da. $10 \text{ K}\Omega$ 5 DIN E 41403	1	Übertrager	
SWD 1 Da. $20 \text{ K}\Omega$ 5 DIN E 41403	R 16	Netztrafo	BV 96/26
SWD 2 Da. 3 K Ω 5 DIN E 41404	R 40	Ausgangsübertrager Siebdrossel	BV 66/2 BV 38,4/27
Potentiometer			2, 30,3121
650 K Ω pos. log. m. Abgriff bei 150 K Ω	R 48	Sicherungen und Skalenlampen Feinsicherung 5 x 20 für 110125 V	1,2 A träge
Tandem-Flachpotentiometer		Feinsicherung 5 x 20 für 220 240 V	0,6 A träge
100 K Ω neg. log.	R 65	Skalenlampe matt Röhrenform	7 V 0,3 A 7 V 0,3 A
100 K Ω pos. log.	R 58	Skalenlampe matt Röhrenform	